Logo Search packages:      
Sourcecode: cacao-source version File versions  Download package

mark.c

/*
 * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
 * Copyright (c) 1991-1995 by Xerox Corporation.  All rights reserved.
 * Copyright (c) 2000 by Hewlett-Packard Company.  All rights reserved.
 *
 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
 * OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
 *
 * Permission is hereby granted to use or copy this program
 * for any purpose,  provided the above notices are retained on all copies.
 * Permission to modify the code and to distribute modified code is granted,
 * provided the above notices are retained, and a notice that the code was
 * modified is included with the above copyright notice.
 *
 */

#include "config.h"

# include <stdio.h>
# include "private/gc_pmark.h"

#if defined(MSWIN32) && defined(__GNUC__)
# include <excpt.h>
#endif

/* We put this here to minimize the risk of inlining. */
/*VARARGS*/
#ifdef __WATCOMC__
  void GC_noop(void *p, ...) {}
#else
  void GC_noop() {}
#endif

/* Single argument version, robust against whole program analysis. */
void GC_noop1(word x)
{
    static volatile word sink;

    sink = x;
}

/* mark_proc GC_mark_procs[MAX_MARK_PROCS] = {0} -- declared in gc_priv.h */

unsigned GC_n_mark_procs = GC_RESERVED_MARK_PROCS;

/* Initialize GC_obj_kinds properly and standard free lists properly.   */
/* This must be done statically since they may be accessed before       */
/* GC_init is called.                                       */
/* It's done here, since we need to deal with mark descriptors.         */
struct obj_kind GC_obj_kinds[MAXOBJKINDS] = {
/* PTRFREE */ { &GC_aobjfreelist[0], 0 /* filled in dynamically */,
            0 | GC_DS_LENGTH, FALSE, FALSE },
/* NORMAL  */ { &GC_objfreelist[0], 0,
            0 | GC_DS_LENGTH,  /* Adjusted in GC_init_inner for EXTRA_BYTES */
            TRUE /* add length to descr */, TRUE },
/* UNCOLLECTABLE */
            { &GC_uobjfreelist[0], 0,
            0 | GC_DS_LENGTH, TRUE /* add length to descr */, TRUE },
# ifdef ATOMIC_UNCOLLECTABLE
   /* AUNCOLLECTABLE */
            { &GC_auobjfreelist[0], 0,
            0 | GC_DS_LENGTH, FALSE /* add length to descr */, FALSE },
# endif
# ifdef STUBBORN_ALLOC
/*STUBBORN*/ { &GC_sobjfreelist[0], 0,
            0 | GC_DS_LENGTH, TRUE /* add length to descr */, TRUE },
# endif
};

# ifdef ATOMIC_UNCOLLECTABLE
#   ifdef STUBBORN_ALLOC
      unsigned GC_n_kinds = 5;
#   else
      unsigned GC_n_kinds = 4;
#   endif
# else
#   ifdef STUBBORN_ALLOC
      unsigned GC_n_kinds = 4;
#   else
      unsigned GC_n_kinds = 3;
#   endif
# endif


# ifndef INITIAL_MARK_STACK_SIZE
#   define INITIAL_MARK_STACK_SIZE (1*HBLKSIZE)
            /* INITIAL_MARK_STACK_SIZE * sizeof(mse) should be a  */
            /* multiple of HBLKSIZE.                        */
            /* The incremental collector actually likes a larger  */
            /* size, since it want to push all marked dirty objs  */
            /* before marking anything new.  Currently we let it  */
            /* grow dynamically.                            */
# endif

/*
 * Limits of stack for GC_mark routine.
 * All ranges between GC_mark_stack(incl.) and GC_mark_stack_top(incl.) still
 * need to be marked from.
 */

word GC_n_rescuing_pages;     /* Number of dirty pages we marked from */
                        /* excludes ptrfree pages, etc.           */

mse * GC_mark_stack;

mse * GC_mark_stack_limit;

size_t GC_mark_stack_size = 0;
 
#ifdef PARALLEL_MARK
# include "atomic_ops.h"

  mse * volatile GC_mark_stack_top;
  /* Updated only with mark lock held, but read asynchronously.   */
  volatile AO_t GC_first_nonempty;
      /* Lowest entry on mark stack */
      /* that may be nonempty.      */
      /* Updated only by initiating       */
      /* thread.              */
#else
  mse * GC_mark_stack_top;
#endif

static struct hblk * scan_ptr;

mark_state_t GC_mark_state = MS_NONE;

GC_bool GC_mark_stack_too_small = FALSE;

GC_bool GC_objects_are_marked = FALSE;    /* Are there collectable marked     */
                              /* objects in the heap?       */

/* Is a collection in progress?  Note that this can return true in the  */
/* nonincremental case, if a collection has been abandoned and the      */
/* mark state is now MS_INVALID.                            */
GC_bool GC_collection_in_progress(void)
{
    return(GC_mark_state != MS_NONE);
}

/* clear all mark bits in the header */
void GC_clear_hdr_marks(hdr *hhdr)
{
    size_t last_bit = FINAL_MARK_BIT(hhdr -> hb_sz);

#   ifdef USE_MARK_BYTES
      BZERO(hhdr -> hb_marks, MARK_BITS_SZ);
      hhdr -> hb_marks[last_bit] = 1;
#   else
      BZERO(hhdr -> hb_marks, MARK_BITS_SZ*sizeof(word));
      set_mark_bit_from_hdr(hhdr, last_bit);
#   endif
    hhdr -> hb_n_marks = 0;
}

/* Set all mark bits in the header.  Used for uncollectable blocks. */
void GC_set_hdr_marks(hdr *hhdr)
{
    unsigned i;
    size_t sz = hhdr -> hb_sz;
    size_t n_marks = FINAL_MARK_BIT(sz);

#   ifdef USE_MARK_BYTES
      for (i = 0; i <= n_marks; i += MARK_BIT_OFFSET(sz)) {
      hhdr -> hb_marks[i] = 1;
      }
#   else
      for (i = 0; i < divWORDSZ(n_marks + WORDSZ); ++i) {
      hhdr -> hb_marks[i] = ONES;
      }
#   endif
#   ifdef MARK_BIT_PER_OBJ
      hhdr -> hb_n_marks = n_marks - 1;
#   else
      hhdr -> hb_n_marks = HBLK_OBJS(sz);
#   endif
}

/*
 * Clear all mark bits associated with block h.
 */
/*ARGSUSED*/
static void clear_marks_for_block(struct hblk *h, word dummy)
{
    register hdr * hhdr = HDR(h);
    
    if (IS_UNCOLLECTABLE(hhdr -> hb_obj_kind)) return;
        /* Mark bit for these is cleared only once the object is  */
        /* explicitly deallocated.  This either frees the block, or     */
        /* the bit is cleared once the object is on the free list.      */
    GC_clear_hdr_marks(hhdr);
}

/* Slow but general routines for setting/clearing/asking about mark bits */
void GC_set_mark_bit(ptr_t p)
{
    struct hblk *h = HBLKPTR(p);
    hdr * hhdr = HDR(h);
    word bit_no = MARK_BIT_NO(p - (ptr_t)h, hhdr -> hb_sz);
    
    if (!mark_bit_from_hdr(hhdr, bit_no)) {
      set_mark_bit_from_hdr(hhdr, bit_no);
      ++hhdr -> hb_n_marks;
    }
}

void GC_clear_mark_bit(ptr_t p)
{
    struct hblk *h = HBLKPTR(p);
    hdr * hhdr = HDR(h);
    word bit_no = MARK_BIT_NO(p - (ptr_t)h, hhdr -> hb_sz);
    
    if (mark_bit_from_hdr(hhdr, bit_no)) {
      size_t n_marks;
      clear_mark_bit_from_hdr(hhdr, bit_no);
      n_marks = hhdr -> hb_n_marks - 1;
#     ifdef PARALLEL_MARK
        if (n_marks != 0)
          hhdr -> hb_n_marks = n_marks; 
        /* Don't decrement to zero.  The counts are approximate due to  */
        /* concurrency issues, but we need to ensure that a count of    */
        /* zero implies an empty block.                           */
#     else
          hhdr -> hb_n_marks = n_marks; 
#     endif
    }
}

GC_bool GC_is_marked(ptr_t p)
{
    struct hblk *h = HBLKPTR(p);
    hdr * hhdr = HDR(h);
    word bit_no = MARK_BIT_NO(p - (ptr_t)h, hhdr -> hb_sz);
    
    return((GC_bool)mark_bit_from_hdr(hhdr, bit_no));
}


/*
 * Clear mark bits in all allocated heap blocks.  This invalidates
 * the marker invariant, and sets GC_mark_state to reflect this.
 * (This implicitly starts marking to reestablish the invariant.)
 */
void GC_clear_marks(void)
{
    GC_apply_to_all_blocks(clear_marks_for_block, (word)0);
    GC_objects_are_marked = FALSE;
    GC_mark_state = MS_INVALID;
    scan_ptr = 0;
}

/* Initiate a garbage collection.  Initiates a full collection if the   */
/* mark     state is invalid.                               */
/*ARGSUSED*/
void GC_initiate_gc(void)
{
    if (GC_dirty_maintained) GC_read_dirty();
#   ifdef STUBBORN_ALLOC
      GC_read_changed();
#   endif
#   ifdef CHECKSUMS
      {
          extern void GC_check_dirty();
          
          if (GC_dirty_maintained) GC_check_dirty();
      }
#   endif
    GC_n_rescuing_pages = 0;
    if (GC_mark_state == MS_NONE) {
        GC_mark_state = MS_PUSH_RESCUERS;
    } else if (GC_mark_state != MS_INVALID) {
      ABORT("unexpected state");
    } /* else this is really a full collection, and mark    */
      /* bits are invalid.                            */
    scan_ptr = 0;
}


static void alloc_mark_stack(size_t);

# if defined(MSWIN32) || defined(USE_PROC_FOR_LIBRARIES) && defined(THREADS)
    /* Under rare conditions, we may end up marking from nonexistent memory. */
    /* Hence we need to be prepared to recover by running GC_mark_some       */
    /* with a suitable handler in place.                         */
#   define WRAP_MARK_SOME
# endif

/* Perform a small amount of marking.                 */
/* We try to touch roughly a page of memory.          */
/* Return TRUE if we just finished a mark phase.      */
/* Cold_gc_frame is an address inside a GC frame that */
/* remains valid until all marking is complete.       */
/* A zero value indicates that it's OK to miss some   */
/* register values.                             */
/* We hold the allocation lock.  In the case of       */
/* incremental collection, the world may not be stopped.*/
#ifdef WRAP_MARK_SOME
  /* For win32, this is called after we establish a structured    */
  /* exception handler, in case Windows unmaps one of our root    */
  /* segments.  See below.  In either case, we acquire the  */
  /* allocator lock long before we get here.                */
  GC_bool GC_mark_some_inner(ptr_t cold_gc_frame)
#else
  GC_bool GC_mark_some(ptr_t cold_gc_frame)
#endif
{
    switch(GC_mark_state) {
      case MS_NONE:
          return(FALSE);
          
      case MS_PUSH_RESCUERS:
          if (GC_mark_stack_top
              >= GC_mark_stack_limit - INITIAL_MARK_STACK_SIZE/2) {
            /* Go ahead and mark, even though that might cause us to */
            /* see more marked dirty objects later on.  Avoid this       */
            /* in the future.                          */
            GC_mark_stack_too_small = TRUE;
              MARK_FROM_MARK_STACK();
              return(FALSE);
          } else {
              scan_ptr = GC_push_next_marked_dirty(scan_ptr);
              if (scan_ptr == 0) {
                if (GC_print_stats) {
                  GC_log_printf("Marked from %u dirty pages\n",
                              GC_n_rescuing_pages);
                }
                GC_push_roots(FALSE, cold_gc_frame);
                GC_objects_are_marked = TRUE;
                if (GC_mark_state != MS_INVALID) {
                    GC_mark_state = MS_ROOTS_PUSHED;
                }
            }
          }
          return(FALSE);
      
      case MS_PUSH_UNCOLLECTABLE:
          if (GC_mark_stack_top
              >= GC_mark_stack + GC_mark_stack_size/4) {
#           ifdef PARALLEL_MARK
              /* Avoid this, since we don't parallelize the marker      */
              /* here.                                */
              if (GC_parallel) GC_mark_stack_too_small = TRUE;
#           endif
              MARK_FROM_MARK_STACK();
              return(FALSE);
          } else {
              scan_ptr = GC_push_next_marked_uncollectable(scan_ptr);
              if (scan_ptr == 0) {
                GC_push_roots(TRUE, cold_gc_frame);
                GC_objects_are_marked = TRUE;
                if (GC_mark_state != MS_INVALID) {
                    GC_mark_state = MS_ROOTS_PUSHED;
                }
            }
          }
          return(FALSE);
      
      case MS_ROOTS_PUSHED:
#         ifdef PARALLEL_MARK
            /* In the incremental GC case, this currently doesn't */
            /* quite do the right thing, since it runs to         */
            /* completion.  On the other hand, starting a         */
            /* parallel marker is expensive, so perhaps it is           */
            /* the right thing?                             */
            /* Eventually, incremental marking should run         */
            /* asynchronously in multiple threads, without grabbing     */
            /* the allocation lock.                         */
              if (GC_parallel) {
              GC_do_parallel_mark();
              GC_ASSERT(GC_mark_stack_top < (mse *)GC_first_nonempty);
              GC_mark_stack_top = GC_mark_stack - 1;
                if (GC_mark_stack_too_small) {
                  alloc_mark_stack(2*GC_mark_stack_size);
                }
              if (GC_mark_state == MS_ROOTS_PUSHED) {
                  GC_mark_state = MS_NONE;
                  return(TRUE);
              } else {
                return(FALSE);
                }
            }
#         endif
          if (GC_mark_stack_top >= GC_mark_stack) {
              MARK_FROM_MARK_STACK();
              return(FALSE);
          } else {
              GC_mark_state = MS_NONE;
              if (GC_mark_stack_too_small) {
                  alloc_mark_stack(2*GC_mark_stack_size);
              }
              return(TRUE);
          }
          
      case MS_INVALID:
      case MS_PARTIALLY_INVALID:
          if (!GC_objects_are_marked) {
            GC_mark_state = MS_PUSH_UNCOLLECTABLE;
            return(FALSE);
          }
          if (GC_mark_stack_top >= GC_mark_stack) {
              MARK_FROM_MARK_STACK();
              return(FALSE);
          }
          if (scan_ptr == 0 && GC_mark_state == MS_INVALID) {
            /* About to start a heap scan for marked objects. */
            /* Mark stack is empty.  OK to reallocate.        */
            if (GC_mark_stack_too_small) {
                  alloc_mark_stack(2*GC_mark_stack_size);
            }
            GC_mark_state = MS_PARTIALLY_INVALID;
          }
          scan_ptr = GC_push_next_marked(scan_ptr);
          if (scan_ptr == 0 && GC_mark_state == MS_PARTIALLY_INVALID) {
            GC_push_roots(TRUE, cold_gc_frame);
            GC_objects_are_marked = TRUE;
            if (GC_mark_state != MS_INVALID) {
                GC_mark_state = MS_ROOTS_PUSHED;
            }
          }
          return(FALSE);
      default:
          ABORT("GC_mark_some: bad state");
          return(FALSE);
    }
}


#if defined(MSWIN32) && defined(__GNUC__)

    typedef struct {
      EXCEPTION_REGISTRATION ex_reg;
      void *alt_path;
    } ext_ex_regn;


    static EXCEPTION_DISPOSITION mark_ex_handler(
        struct _EXCEPTION_RECORD *ex_rec, 
        void *est_frame,
        struct _CONTEXT *context,
        void *disp_ctxt)
    {
        if (ex_rec->ExceptionCode == STATUS_ACCESS_VIOLATION) {
          ext_ex_regn *xer = (ext_ex_regn *)est_frame;

          /* Unwind from the inner function assuming the standard */
          /* function prologue.                                   */
          /* Assumes code has not been compiled with              */
          /* -fomit-frame-pointer.                                */
          context->Esp = context->Ebp;
          context->Ebp = *((DWORD *)context->Esp);
          context->Esp = context->Esp - 8;

          /* Resume execution at the "real" handler within the    */
          /* wrapper function.                                    */
          context->Eip = (DWORD )(xer->alt_path);

          return ExceptionContinueExecution;

        } else {
            return ExceptionContinueSearch;
        }
    }
# endif /* __GNUC__  && MSWIN32 */

#ifdef GC_WIN32_THREADS
  extern GC_bool GC_started_thread_while_stopped(void);
  /* In win32_threads.c.  Did we invalidate mark phase with an    */
  /* unexpected thread start?                         */
#endif

# ifdef WRAP_MARK_SOME
  GC_bool GC_mark_some(ptr_t cold_gc_frame)
  {
      GC_bool ret_val;

#   ifdef MSWIN32
#    ifndef __GNUC__
      /* Windows 98 appears to asynchronously create and remove  */
      /* writable memory mappings, for reasons we haven't yet    */
      /* understood.  Since we look for writable regions to      */
      /* determine the root set, we may try to mark from an      */
      /* address range that disappeared since we started the     */
      /* collection.  Thus we have to recover from faults here.  */
      /* This code does not appear to be necessary for Windows   */
      /* 95/NT/2000. Note that this code should never generate   */
      /* an incremental GC write fault.                          */
      /* It's conceivable that this is the same issue with   */
      /* terminating threads that we see with Linux and            */
      /* USE_PROC_FOR_LIBRARIES.                       */

      __try {
          ret_val = GC_mark_some_inner(cold_gc_frame);
      } __except (GetExceptionCode() == EXCEPTION_ACCESS_VIOLATION ?
                EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH) {
        goto handle_ex;
      }
#     ifdef GC_WIN32_THREADS
      /* With DllMain-based thread tracking, a thread may have    */
      /* started while we were marking.  This is logically equivalent   */
      /* to the exception case; our results are invalid and we have     */
      /* to start over.  This cannot be prevented since we can't  */
      /* block in DllMain.                                  */
      if (GC_started_thread_while_stopped()) goto handle_ex;
#     endif
     rm_handler:
      return ret_val;

#    else /* __GNUC__ */

      /* Manually install an exception handler since GCC does    */
      /* not yet support Structured Exception Handling (SEH) on  */
      /* Win32.                                                  */

      ext_ex_regn er;

      er.alt_path = &&handle_ex;
      er.ex_reg.handler = mark_ex_handler;
      asm volatile ("movl %%fs:0, %0" : "=r" (er.ex_reg.prev));
      asm volatile ("movl %0, %%fs:0" : : "r" (&er));
      ret_val = GC_mark_some_inner(cold_gc_frame);
      /* Prevent GCC from considering the following code unreachable */
      /* and thus eliminating it.                                    */
        if (er.alt_path == 0)
          goto handle_ex;
    rm_handler:
      /* Uninstall the exception handler */
      asm volatile ("mov %0, %%fs:0" : : "r" (er.ex_reg.prev));
      return ret_val;

#    endif /* __GNUC__ */
#   else /* !MSWIN32 */
      /* Here we are handling the case in which /proc is used for root  */
      /* finding, and we have threads.  We may find a stack for a */
      /* thread that is in the process of exiting, and disappears */
      /* while we are marking it.  This seems extremely difficult to    */
      /* avoid otherwise.                                   */
      if (GC_incremental)
            WARN("Incremental GC incompatible with /proc roots\n", 0);
            /* I'm not sure if this could still work ...    */
      GC_setup_temporary_fault_handler();
      if(SETJMP(GC_jmp_buf) != 0) goto handle_ex;
      ret_val = GC_mark_some_inner(cold_gc_frame);
    rm_handler:
      GC_reset_fault_handler();
      return ret_val;
      
#   endif /* !MSWIN32 */

handle_ex:
    /* Exception handler starts here for all cases. */
      if (GC_print_stats) {
        GC_log_printf("Caught ACCESS_VIOLATION in marker. "
                  "Memory mapping disappeared.\n");
      }

      /* We have bad roots on the stack.  Discard mark stack.     */
      /* Rescan from marked objects.  Redetermine roots.    */
      GC_invalidate_mark_state();   
      scan_ptr = 0;

      ret_val = FALSE;
      goto rm_handler;  // Back to platform-specific code.
  }
#endif /* WRAP_MARK_SOME */


GC_bool GC_mark_stack_empty(void)
{
    return(GC_mark_stack_top < GC_mark_stack);
}     

void GC_invalidate_mark_state(void)
{
    GC_mark_state = MS_INVALID;
    GC_mark_stack_top = GC_mark_stack-1;
}

mse * GC_signal_mark_stack_overflow(mse *msp)
{
    GC_mark_state = MS_INVALID;
    GC_mark_stack_too_small = TRUE;
    if (GC_print_stats) {
      GC_log_printf("Mark stack overflow; current size = %lu entries\n",
                  GC_mark_stack_size);
    }
    return(msp - GC_MARK_STACK_DISCARDS);
}

/*
 * Mark objects pointed to by the regions described by
 * mark stack entries between mark_stack and mark_stack_top,
 * inclusive.  Assumes the upper limit of a mark stack entry
 * is never 0.  A mark stack entry never has size 0.
 * We try to traverse on the order of a hblk of memory before we return.
 * Caller is responsible for calling this until the mark stack is empty.
 * Note that this is the most performance critical routine in the
 * collector.  Hence it contains all sorts of ugly hacks to speed
 * things up.  In particular, we avoid procedure calls on the common
 * path, we take advantage of peculiarities of the mark descriptor
 * encoding, we optionally maintain a cache for the block address to
 * header mapping, we prefetch when an object is "grayed", etc. 
 */
mse * GC_mark_from(mse *mark_stack_top, mse *mark_stack, mse *mark_stack_limit)
{
  signed_word credit = HBLKSIZE;  /* Remaining credit for marking work  */
  ptr_t current_p;      /* Pointer to current candidate ptr.      */
  word current;   /* Candidate pointer.               */
  ptr_t limit;    /* (Incl) limit of current candidate      */
                        /* range                      */
  word descr;
  ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
  ptr_t least_ha = GC_least_plausible_heap_addr;
  DECLARE_HDR_CACHE;

# define SPLIT_RANGE_WORDS 128  /* Must be power of 2.            */

  GC_objects_are_marked = TRUE;
  INIT_HDR_CACHE;
# ifdef OS2 /* Use untweaked version to circumvent compiler problem */
  while (mark_stack_top >= mark_stack && credit >= 0) {
# else
  while ((((ptr_t)mark_stack_top - (ptr_t)mark_stack) | credit)
      >= 0) {
# endif
    current_p = mark_stack_top -> mse_start;
    descr = mark_stack_top -> mse_descr;
  retry:
    /* current_p and descr describe the current object.           */
    /* *mark_stack_top is vacant.                     */
    /* The following is 0 only for small objects described by a simple  */
    /* length descriptor.  For many applications this is the common     */
    /* case, so we try to detect it quickly.                      */
    if (descr & ((~(WORDS_TO_BYTES(SPLIT_RANGE_WORDS) - 1)) | GC_DS_TAGS)) {
      word tag = descr & GC_DS_TAGS;
      
      switch(tag) {
        case GC_DS_LENGTH:
          /* Large length.                                    */
          /* Process part of the range to avoid pushing too much on the */
          /* stack.                                         */
        GC_ASSERT(descr < (word)GC_greatest_plausible_heap_addr
                      - (word)GC_least_plausible_heap_addr);
#       ifdef ENABLE_TRACE
          if (GC_trace_addr >= current_p
            && GC_trace_addr < current_p + descr) {
            GC_log_printf("GC:%d Large section; start %p len %lu\n",
                        GC_gc_no, current_p, (unsigned long) descr);
          }
#       endif /* ENABLE_TRACE */
#       ifdef PARALLEL_MARK
#         define SHARE_BYTES 2048
          if (descr > SHARE_BYTES && GC_parallel
            && mark_stack_top < mark_stack_limit - 1) {
            int new_size = (descr/2) & ~(sizeof(word)-1);
            mark_stack_top -> mse_start = current_p;
            mark_stack_top -> mse_descr = new_size + sizeof(word);
                              /* makes sure we handle       */
                              /* misaligned pointers.       */
            mark_stack_top++;
#           ifdef ENABLE_TRACE
              if (GC_trace_addr >= current_p
                && GC_trace_addr < current_p + descr) {
                GC_log_printf("GC:%d splitting (parallel) %p at %p\n",
                          GC_gc_no, current_p, current_p + new_size);
              }
#           endif /* ENABLE_TRACE */
            current_p += new_size;
            descr -= new_size;
            goto retry;
          }
#       endif /* PARALLEL_MARK */
          mark_stack_top -> mse_start =
            limit = current_p + WORDS_TO_BYTES(SPLIT_RANGE_WORDS-1);
          mark_stack_top -> mse_descr =
                  descr - WORDS_TO_BYTES(SPLIT_RANGE_WORDS-1);
#       ifdef ENABLE_TRACE
          if (GC_trace_addr >= current_p
            && GC_trace_addr < current_p + descr) {
            GC_log_printf("GC:%d splitting %p at %p\n",
                        GC_gc_no, current_p, limit);
          }
#       endif /* ENABLE_TRACE */
          /* Make sure that pointers overlapping the two ranges are     */
          /* considered.                                    */
          limit += sizeof(word) - ALIGNMENT;
          break;
        case GC_DS_BITMAP:
          mark_stack_top--;
#       ifdef ENABLE_TRACE
          if (GC_trace_addr >= current_p
            && GC_trace_addr < current_p + WORDS_TO_BYTES(WORDSZ-2)) {
            GC_log_printf("GC:%d Tracing from %p bitmap descr %lu\n",
                        GC_gc_no, current_p, (unsigned long) descr);
          }
#       endif /* ENABLE_TRACE */
          descr &= ~GC_DS_TAGS;
          credit -= WORDS_TO_BYTES(WORDSZ/2); /* guess */
          while (descr != 0) {
            if ((signed_word)descr < 0) {
              current = *(word *)current_p;
            FIXUP_POINTER(current);
            if ((ptr_t)current >= least_ha && (ptr_t)current < greatest_ha) {
            PREFETCH((ptr_t)current);
#               ifdef ENABLE_TRACE
                if (GC_trace_addr == current_p) {
                  GC_log_printf("GC:%d Considering(3) %p -> %p\n",
                            GC_gc_no, current_p, (ptr_t) current);
                }
#               endif /* ENABLE_TRACE */
                PUSH_CONTENTS((ptr_t)current, mark_stack_top,
                        mark_stack_limit, current_p, exit1);
            }
            }
          descr <<= 1;
          current_p += sizeof(word);
          }
          continue;
        case GC_DS_PROC:
          mark_stack_top--;
#       ifdef ENABLE_TRACE
          if (GC_trace_addr >= current_p
            && GC_base(current_p) != 0
            && GC_base(current_p) == GC_base(GC_trace_addr)) {
            GC_log_printf("GC:%d Tracing from %p proc descr %lu\n",
                        GC_gc_no, current_p, (unsigned long) descr);
          }
#       endif /* ENABLE_TRACE */
          credit -= GC_PROC_BYTES;
          mark_stack_top =
              (*PROC(descr))
                      ((word *)current_p, mark_stack_top,
                      mark_stack_limit, ENV(descr));
          continue;
        case GC_DS_PER_OBJECT:
        if ((signed_word)descr >= 0) {
          /* Descriptor is in the object. */
            descr = *(word *)(current_p + descr - GC_DS_PER_OBJECT);
        } else {
          /* Descriptor is in type descriptor pointed to by first */
          /* word in object.                                */
          ptr_t type_descr = *(ptr_t *)current_p;
          /* type_descr is either a valid pointer to the descriptor     */
          /* structure, or this object was on a free list.  If it       */
          /* it was anything but the last object on the free list,      */
          /* we will misinterpret the next object on the free list as */
          /* the type descriptor, and get a 0 GC descriptor, which      */
          /* is ideal.  Unfortunately, we need to check for the last    */
          /* object case explicitly.                              */
          if (0 == type_descr) {
            /* Rarely executed.     */
            mark_stack_top--;
            continue;
          }
            descr = *(word *)(type_descr
                        - (descr + (GC_INDIR_PER_OBJ_BIAS
                                - GC_DS_PER_OBJECT)));
        }
        if (0 == descr) {
            /* Can happen either because we generated a 0 descriptor    */
            /* or we saw a pointer to a free object.        */
            mark_stack_top--;
            continue;
        }
          goto retry;
      }
    } else /* Small object with length descriptor */ {
      mark_stack_top--;
      limit = current_p + (word)descr;
    }
#   ifdef ENABLE_TRACE
      if (GC_trace_addr >= current_p
          && GC_trace_addr < limit) {
          GC_log_printf("GC:%d Tracing from %p len %lu\n",
                    GC_gc_no, current_p, (unsigned long) descr);
      }
#   endif /* ENABLE_TRACE */
    /* The simple case in which we're scanning a range.     */
    GC_ASSERT(!((word)current_p & (ALIGNMENT-1)));
    credit -= limit - current_p;
    limit -= sizeof(word);
    {
#     define PREF_DIST 4

#     ifndef SMALL_CONFIG
        word deferred;

      /* Try to prefetch the next pointer to be examined asap.    */
      /* Empirically, this also seems to help slightly without    */
      /* prefetches, at least on linux/X86.  Presumably this loop       */
      /* ends up with less register pressure, and gcc thus ends up      */
      /* generating slightly better code.  Overall gcc code quality     */
      /* for this loop is still not great.                        */
      for(;;) {
        PREFETCH(limit - PREF_DIST*CACHE_LINE_SIZE);
        GC_ASSERT(limit >= current_p);
        deferred = *(word *)limit;
        FIXUP_POINTER(deferred);
        limit -= ALIGNMENT;
        if ((ptr_t)deferred >= least_ha && (ptr_t)deferred <  greatest_ha) {
          PREFETCH((ptr_t)deferred);
          break;
        }
        if (current_p > limit) goto next_object;
        /* Unroll once, so we don't do too many of the prefetches       */
        /* based on limit.                                  */
        deferred = *(word *)limit;
        FIXUP_POINTER(deferred);
        limit -= ALIGNMENT;
        if ((ptr_t)deferred >= least_ha && (ptr_t)deferred <  greatest_ha) {
          PREFETCH((ptr_t)deferred);
          break;
        }
        if (current_p > limit) goto next_object;
      }
#     endif

      while (current_p <= limit) {
      /* Empirically, unrolling this loop doesn't help a lot.     */
      /* Since PUSH_CONTENTS expands to a lot of code,      */
      /* we don't.                                    */
        current = *(word *)current_p;
      FIXUP_POINTER(current);
        PREFETCH(current_p + PREF_DIST*CACHE_LINE_SIZE);
        if ((ptr_t)current >= least_ha && (ptr_t)current <  greatest_ha) {
        /* Prefetch the contents of the object we just pushed.  It's    */
        /* likely we will need them soon.                   */
        PREFETCH((ptr_t)current);
#         ifdef ENABLE_TRACE
          if (GC_trace_addr == current_p) {
              GC_log_printf("GC:%d Considering(1) %p -> %p\n",
                        GC_gc_no, current_p, (ptr_t) current);
          }
#         endif /* ENABLE_TRACE */
          PUSH_CONTENTS((ptr_t)current, mark_stack_top,
                       mark_stack_limit, current_p, exit2);
        }
        current_p += ALIGNMENT;
      }

#     ifndef SMALL_CONFIG
      /* We still need to mark the entry we previously prefetched.      */
      /* We already know that it passes the preliminary pointer   */
      /* validity test.                               */
#       ifdef ENABLE_TRACE
          if (GC_trace_addr == current_p) {
              GC_log_printf("GC:%d Considering(2) %p -> %p\n",
                        GC_gc_no, current_p, (ptr_t) deferred);
          }
#       endif /* ENABLE_TRACE */
        PUSH_CONTENTS((ptr_t)deferred, mark_stack_top,
                     mark_stack_limit, current_p, exit4);
      next_object:;
#     endif
    }
  }
  return mark_stack_top;
}

#ifdef PARALLEL_MARK

/* We assume we have an ANSI C Compiler.  */
GC_bool GC_help_wanted = FALSE;
unsigned GC_helper_count = 0;
unsigned GC_active_count = 0;
word GC_mark_no = 0;

#define LOCAL_MARK_STACK_SIZE HBLKSIZE
      /* Under normal circumstances, this is big enough to guarantee    */
      /* We don't overflow half of it in a single call to         */
      /* GC_mark_from.                                */


/* Steal mark stack entries starting at mse low into mark stack local   */
/* until we either steal mse high, or we have max entries.        */
/* Return a pointer to the top of the local mark stack.                   */
/* *next is replaced by a pointer to the next unscanned mark stack      */
/* entry.                                             */
mse * GC_steal_mark_stack(mse * low, mse * high, mse * local,
                    unsigned max, mse **next)
{
    mse *p;
    mse *top = local - 1;
    unsigned i = 0;

    GC_ASSERT(high >= low-1 && high - low + 1 <= GC_mark_stack_size);
    for (p = low; p <= high && i <= max; ++p) {
      word descr = AO_load((volatile AO_t *) &(p -> mse_descr));
      if (descr != 0) {
          /* Must be ordered after read of descr: */
          AO_store_release_write((volatile AO_t *) &(p -> mse_descr), 0);
          /* More than one thread may get this entry, but that's only */
          /* a minor performance problem.                   */
          ++top;
          top -> mse_descr = descr;
          top -> mse_start = p -> mse_start;
          GC_ASSERT((top -> mse_descr & GC_DS_TAGS) != GC_DS_LENGTH || 
                  top -> mse_descr < (ptr_t)GC_greatest_plausible_heap_addr
                                   - (ptr_t)GC_least_plausible_heap_addr);
          /* If this is a big object, count it as                 */
          /* size/256 + 1 objects.                          */
          ++i;
          if ((descr & GC_DS_TAGS) == GC_DS_LENGTH) i += (descr >> 8);
      }
    }
    *next = p;
    return top;
}

/* Copy back a local mark stack.    */
/* low and high are inclusive bounds.     */
void GC_return_mark_stack(mse * low, mse * high)
{
    mse * my_top;
    mse * my_start;
    size_t stack_size;

    if (high < low) return;
    stack_size = high - low + 1;
    GC_acquire_mark_lock();
    my_top = GC_mark_stack_top;     /* Concurrent modification impossible. */
    my_start = my_top + 1;
    if (my_start - GC_mark_stack + stack_size > GC_mark_stack_size) {
      if (GC_print_stats) {
        GC_log_printf("No room to copy back mark stack.");
      }
      GC_mark_state = MS_INVALID;
      GC_mark_stack_too_small = TRUE;
      /* We drop the local mark stack.  We'll fix things later.   */
    } else {
      BCOPY(low, my_start, stack_size * sizeof(mse));
      GC_ASSERT((mse *)AO_load((volatile AO_t *)(&GC_mark_stack_top))
            == my_top);
      AO_store_release_write((volatile AO_t *)(&GC_mark_stack_top),
                         (AO_t)(my_top + stack_size));
                  /* Ensures visibility of previously written stack contents. */
    }
    GC_release_mark_lock();
    GC_notify_all_marker();
}

/* Mark from the local mark stack.        */
/* On return, the local mark stack is empty.    */
/* But this may be achieved by copying the      */
/* local mark stack back into the global one.   */
void GC_do_local_mark(mse *local_mark_stack, mse *local_top)
{
    unsigned n;
#   define N_LOCAL_ITERS 1

#   ifdef GC_ASSERTIONS
      /* Make sure we don't hold mark lock. */
      GC_acquire_mark_lock();
      GC_release_mark_lock();
#   endif
    for (;;) {
        for (n = 0; n < N_LOCAL_ITERS; ++n) {
          local_top = GC_mark_from(local_top, local_mark_stack,
                             local_mark_stack + LOCAL_MARK_STACK_SIZE);
          if (local_top < local_mark_stack) return;
          if (local_top - local_mark_stack >= LOCAL_MARK_STACK_SIZE/2) {
            GC_return_mark_stack(local_mark_stack, local_top);
            return;
          }
      }
      if ((mse *)AO_load((volatile AO_t *)(&GC_mark_stack_top))
          < (mse *)AO_load(&GC_first_nonempty)
          && GC_active_count < GC_helper_count
          && local_top > local_mark_stack + 1) {
          /* Try to share the load, since the main stack is empty,      */
          /* and helper threads are waiting for a refill.         */
          /* The entries near the bottom of the stack are likely  */
          /* to require more work.  Thus we return those, eventhough    */
          /* it's harder.                                   */
          mse * new_bottom = local_mark_stack
                        + (local_top - local_mark_stack)/2;
          GC_ASSERT(new_bottom > local_mark_stack
                  && new_bottom < local_top);
          GC_return_mark_stack(local_mark_stack, new_bottom - 1);
          memmove(local_mark_stack, new_bottom,
                (local_top - new_bottom + 1) * sizeof(mse));
          local_top -= (new_bottom - local_mark_stack);
      }
    }
}

#define ENTRIES_TO_GET 5

long GC_markers = 2;          /* Normally changed by thread-library-    */
                        /* -specific code.                  */

/* Mark using the local mark stack until the global mark stack is empty */
/* and there are no active workers. Update GC_first_nonempty to reflect */
/* progress.                                                */
/* Caller does not hold mark lock.                          */
/* Caller has already incremented GC_helper_count.  We decrement it,    */
/* and maintain GC_active_count.                            */
void GC_mark_local(mse *local_mark_stack, int id)
{
    mse * my_first_nonempty;

    GC_acquire_mark_lock();
    GC_active_count++;
    my_first_nonempty = (mse *)AO_load(&GC_first_nonempty);
    GC_ASSERT((mse *)AO_load(&GC_first_nonempty) >= GC_mark_stack && 
            (mse *)AO_load(&GC_first_nonempty) <=
            (mse *)AO_load((volatile AO_t *)(&GC_mark_stack_top)) + 1);
    if (GC_print_stats == VERBOSE)
      GC_log_printf("Starting mark helper %lu\n", (unsigned long)id);
    GC_release_mark_lock();
    for (;;) {
      size_t n_on_stack;
        size_t n_to_get;
      mse * my_top;
      mse * local_top;
        mse * global_first_nonempty = (mse *)AO_load(&GC_first_nonempty);

      GC_ASSERT(my_first_nonempty >= GC_mark_stack && 
              my_first_nonempty <=
              (mse *)AO_load((volatile AO_t *)(&GC_mark_stack_top))  + 1);
      GC_ASSERT(global_first_nonempty >= GC_mark_stack && 
              global_first_nonempty <= 
              (mse *)AO_load((volatile AO_t *)(&GC_mark_stack_top))  + 1);
      if (my_first_nonempty < global_first_nonempty) {
          my_first_nonempty = global_first_nonempty;
        } else if (global_first_nonempty < my_first_nonempty) {
          AO_compare_and_swap(&GC_first_nonempty, 
                        (AO_t) global_first_nonempty,
                        (AO_t) my_first_nonempty);
          /* If this fails, we just go ahead, without updating    */
          /* GC_first_nonempty.                             */
      }
      /* Perhaps we should also update GC_first_nonempty, if it */
      /* is less.  But that would require using atomic updates. */
      my_top = (mse *)AO_load_acquire((volatile AO_t *)(&GC_mark_stack_top));
      n_on_stack = my_top - my_first_nonempty + 1;
        if (0 == n_on_stack) {
          GC_acquire_mark_lock();
            my_top = GC_mark_stack_top;
            /* Asynchronous modification impossible here,   */
              /* since we hold mark lock.                   */
            n_on_stack = my_top - my_first_nonempty + 1;
          if (0 == n_on_stack) {
            GC_active_count--;
            GC_ASSERT(GC_active_count <= GC_helper_count);
            /* Other markers may redeposit objects    */
            /* on the stack.                    */
            if (0 == GC_active_count) GC_notify_all_marker();
            while (GC_active_count > 0
                   && (mse *)AO_load(&GC_first_nonempty)
                      > GC_mark_stack_top) {
                /* We will be notified if either GC_active_count  */
                /* reaches zero, or if more objects are pushed on */
                /* the global mark stack.                   */
                GC_wait_marker();
            }
            if (GC_active_count == 0 &&
                (mse *)AO_load(&GC_first_nonempty) > GC_mark_stack_top) { 
                GC_bool need_to_notify = FALSE;
                /* The above conditions can't be falsified while we     */
                /* hold the mark lock, since neither        */
                /* GC_active_count nor GC_mark_stack_top can      */
                /* change.  GC_first_nonempty can only be         */
                /* incremented asynchronously.  Thus we know that */
                /* both conditions actually held simultaneously.  */
                GC_helper_count--;
                if (0 == GC_helper_count) need_to_notify = TRUE;
                if (GC_print_stats == VERBOSE)
                  GC_log_printf(
                    "Finished mark helper %lu\n", (unsigned long)id);
                GC_release_mark_lock();
                if (need_to_notify) GC_notify_all_marker();
                return;
            }
            /* else there's something on the stack again, or      */
            /* another helper may push something.                 */
            GC_active_count++;
              GC_ASSERT(GC_active_count > 0);
            GC_release_mark_lock();
            continue;
          } else {
            GC_release_mark_lock();
          }
      }
      n_to_get = ENTRIES_TO_GET;
      if (n_on_stack < 2 * ENTRIES_TO_GET) n_to_get = 1;
      local_top = GC_steal_mark_stack(my_first_nonempty, my_top,
                              local_mark_stack, n_to_get,
                                &my_first_nonempty);
        GC_ASSERT(my_first_nonempty >= GC_mark_stack && 
                my_first_nonempty <=
                (mse *)AO_load((volatile AO_t *)(&GC_mark_stack_top)) + 1);
      GC_do_local_mark(local_mark_stack, local_top);
    }
}

/* Perform Parallel mark.                 */
/* We hold the GC lock, not the mark lock.      */
/* Currently runs until the mark stack is */
/* empty.                           */
void GC_do_parallel_mark()
{
    mse local_mark_stack[LOCAL_MARK_STACK_SIZE];

    GC_acquire_mark_lock();
    GC_ASSERT(I_HOLD_LOCK());
    /* This could be a GC_ASSERT, but it seems safer to keep it on      */
    /* all the time, especially since it's cheap.                 */
    if (GC_help_wanted || GC_active_count != 0 || GC_helper_count != 0)
      ABORT("Tried to start parallel mark in bad state");
    if (GC_print_stats == VERBOSE)
      GC_log_printf("Starting marking for mark phase number %lu\n",
               (unsigned long)GC_mark_no);
    GC_first_nonempty = (AO_t)GC_mark_stack;
    GC_active_count = 0;
    GC_helper_count = 1;
    GC_help_wanted = TRUE;
    GC_release_mark_lock();
    GC_notify_all_marker();
      /* Wake up potential helpers. */
    GC_mark_local(local_mark_stack, 0);
    GC_acquire_mark_lock();
    GC_help_wanted = FALSE;
    /* Done; clean up.  */
    while (GC_helper_count > 0) GC_wait_marker();
    /* GC_helper_count cannot be incremented while GC_help_wanted == FALSE */
    if (GC_print_stats == VERBOSE)
      GC_log_printf(
          "Finished marking for mark phase number %lu\n",
          (unsigned long)GC_mark_no);
    GC_mark_no++;
    GC_release_mark_lock();
    GC_notify_all_marker();
}


/* Try to help out the marker, if it's running.         */
/* We do not hold the GC lock, but the requestor does.      */
void GC_help_marker(word my_mark_no)
{
    mse local_mark_stack[LOCAL_MARK_STACK_SIZE];
    unsigned my_id;

    if (!GC_parallel) return;
    GC_acquire_mark_lock();
    while (GC_mark_no < my_mark_no
           || (!GC_help_wanted && GC_mark_no == my_mark_no)) {
      GC_wait_marker();
    }
    my_id = GC_helper_count;
    if (GC_mark_no != my_mark_no || my_id >= GC_markers) {
      /* Second test is useful only if original threads can also  */
      /* act as helpers.  Under Linux they can't.                 */
      GC_release_mark_lock();
      return;
    }
    GC_helper_count = my_id + 1;
    GC_release_mark_lock();
    GC_mark_local(local_mark_stack, my_id);
    /* GC_mark_local decrements GC_helper_count. */
}

#endif /* PARALLEL_MARK */

/* Allocate or reallocate space for mark stack of size n entries.  */
/* May silently fail.                                    */
static void alloc_mark_stack(size_t n)
{
    mse * new_stack = (mse *)GC_scratch_alloc(n * sizeof(struct GC_ms_entry));
#   ifdef GWW_VDB
      /* Don't recycle a stack segment obtained with the wrong flags.   */
      /* Win32 GetWriteWatch requires the right kind of memory.         */
      static GC_bool GC_incremental_at_stack_alloc = 0;
      GC_bool recycle_old = (!GC_incremental || GC_incremental_at_stack_alloc);

      GC_incremental_at_stack_alloc = GC_incremental;
#   else
#     define recycle_old 1
#   endif
    
    GC_mark_stack_too_small = FALSE;
    if (GC_mark_stack_size != 0) {
        if (new_stack != 0) {
        if (recycle_old) {
            /* Recycle old space */
              size_t page_offset = (word)GC_mark_stack & (GC_page_size - 1);
              size_t size = GC_mark_stack_size * sizeof(struct GC_ms_entry);
            size_t displ = 0;
          
            if (0 != page_offset) displ = GC_page_size - page_offset;
            size = (size - displ) & ~(GC_page_size - 1);
            if (size > 0) {
              GC_add_to_heap((struct hblk *)
                              ((word)GC_mark_stack + displ), (word)size);
            }
        }
          GC_mark_stack = new_stack;
          GC_mark_stack_size = n;
        GC_mark_stack_limit = new_stack + n;
        if (GC_print_stats) {
            GC_log_printf("Grew mark stack to %lu frames\n",
                      (unsigned long) GC_mark_stack_size);
        }
        } else {
        if (GC_print_stats) {
            GC_log_printf("Failed to grow mark stack to %lu frames\n",
                      (unsigned long) n);
        }
        }
    } else {
        if (new_stack == 0) {
            GC_err_printf("No space for mark stack\n");
            EXIT();
        }
        GC_mark_stack = new_stack;
        GC_mark_stack_size = n;
      GC_mark_stack_limit = new_stack + n;
    }
    GC_mark_stack_top = GC_mark_stack-1;
}

void GC_mark_init()
{
    alloc_mark_stack(INITIAL_MARK_STACK_SIZE);
}

/*
 * Push all locations between b and t onto the mark stack.
 * b is the first location to be checked. t is one past the last
 * location to be checked.
 * Should only be used if there is no possibility of mark stack
 * overflow.
 */
void GC_push_all(ptr_t bottom, ptr_t top)
{
    register word length;
    
    bottom = (ptr_t)(((word) bottom + ALIGNMENT-1) & ~(ALIGNMENT-1));
    top = (ptr_t)(((word) top) & ~(ALIGNMENT-1));
    if (top == 0 || bottom == top) return;
    GC_mark_stack_top++;
    if (GC_mark_stack_top >= GC_mark_stack_limit) {
      ABORT("unexpected mark stack overflow");
    }
    length = top - bottom;
#   if GC_DS_TAGS > ALIGNMENT - 1
      length += GC_DS_TAGS;
      length &= ~GC_DS_TAGS;
#   endif
    GC_mark_stack_top -> mse_start = bottom;
    GC_mark_stack_top -> mse_descr = length;
}

/*
 * Analogous to the above, but push only those pages h with dirty_fn(h) != 0.
 * We use push_fn to actually push the block.
 * Used both to selectively push dirty pages, or to push a block
 * in piecemeal fashion, to allow for more marking concurrency.
 * Will not overflow mark stack if push_fn pushes a small fixed number
 * of entries.  (This is invoked only if push_fn pushes a single entry,
 * or if it marks each object before pushing it, thus ensuring progress
 * in the event of a stack overflow.)
 */
void GC_push_selected(ptr_t bottom, ptr_t top,
                  int (*dirty_fn) (struct hblk *),
                  void (*push_fn) (ptr_t, ptr_t))
{
    struct hblk * h;

    bottom = (ptr_t)(((word) bottom + ALIGNMENT-1) & ~(ALIGNMENT-1));
    top = (ptr_t)(((word) top) & ~(ALIGNMENT-1));

    if (top == 0 || bottom == top) return;
    h = HBLKPTR(bottom + HBLKSIZE);
    if (top <= (ptr_t) h) {
      if ((*dirty_fn)(h-1)) {
          (*push_fn)(bottom, top);
      }
      return;
    }
    if ((*dirty_fn)(h-1)) {
        (*push_fn)(bottom, (ptr_t)h);
    }
    while ((ptr_t)(h+1) <= top) {
      if ((*dirty_fn)(h)) {
          if ((word)(GC_mark_stack_top - GC_mark_stack)
            > 3 * GC_mark_stack_size / 4) {
            /* Danger of mark stack overflow */
            (*push_fn)((ptr_t)h, top);
            return;
          } else {
            (*push_fn)((ptr_t)h, (ptr_t)(h+1));
          }
      }
      h++;
    }
    if ((ptr_t)h != top) {
      if ((*dirty_fn)(h)) {
            (*push_fn)((ptr_t)h, top);
        }
    }
    if (GC_mark_stack_top >= GC_mark_stack_limit) {
        ABORT("unexpected mark stack overflow");
    }
}

# ifndef SMALL_CONFIG

#ifdef PARALLEL_MARK
    /* Break up root sections into page size chunks to better spread    */
    /* out work.                                      */
    GC_bool GC_true_func(struct hblk *h) { return TRUE; }
#   define GC_PUSH_ALL(b,t) GC_push_selected(b,t,GC_true_func,GC_push_all);
#else
#   define GC_PUSH_ALL(b,t) GC_push_all(b,t);
#endif


void GC_push_conditional(ptr_t bottom, ptr_t top, GC_bool all)
{
    if (all) {
      if (GC_dirty_maintained) {
#     ifdef PROC_VDB
          /* Pages that were never dirtied cannot contain pointers      */
          GC_push_selected(bottom, top, GC_page_was_ever_dirty, GC_push_all);
#     else
          GC_push_all(bottom, top);
#     endif
      } else {
            GC_push_all(bottom, top);
      }
    } else {
      GC_push_selected(bottom, top, GC_page_was_dirty, GC_push_all);
    }
}
#endif

# if defined(MSWIN32) || defined(MSWINCE)
  void __cdecl GC_push_one(word p)
# else
  void GC_push_one(word p)
# endif
{
    GC_PUSH_ONE_STACK((ptr_t)p, MARKED_FROM_REGISTER);
}

struct GC_ms_entry *GC_mark_and_push(void *obj,
                             mse *mark_stack_ptr,
                             mse *mark_stack_limit,
                             void **src)
{
    hdr * hhdr;

    PREFETCH(obj);
    GET_HDR(obj, hhdr);
    if (EXPECT(IS_FORWARDING_ADDR_OR_NIL(hhdr),FALSE)) {
      if (GC_all_interior_pointers) {
      hhdr = GC_find_header(GC_base(obj));
      if (hhdr == 0) {
          GC_ADD_TO_BLACK_LIST_NORMAL(obj, src);
        return mark_stack_ptr;
      }
      } else {
        GC_ADD_TO_BLACK_LIST_NORMAL(obj, src);
      return mark_stack_ptr;
      }
    }
    if (EXPECT(HBLK_IS_FREE(hhdr),0)) {
      GC_ADD_TO_BLACK_LIST_NORMAL(obj, src);
      return mark_stack_ptr;
    }

    PUSH_CONTENTS_HDR(obj, mark_stack_ptr /* modified */, mark_stack_limit,
                  src, was_marked, hhdr, TRUE);
 was_marked:
    return mark_stack_ptr;
}

/* Mark and push (i.e. gray) a single object p onto the main      */
/* mark stack.  Consider p to be valid if it is an interior */
/* pointer.                                     */
/* The object p has passed a preliminary pointer validity   */
/* test, but we do not definitely know whether it is valid. */
/* Mark bits are NOT atomically updated.  Thus this must be the   */
/* only thread setting them.                          */
# if defined(PRINT_BLACK_LIST) || defined(KEEP_BACK_PTRS)
    void GC_mark_and_push_stack(ptr_t p, ptr_t source)
# else
    void GC_mark_and_push_stack(ptr_t p)
#   define source 0
# endif
{
    hdr * hhdr; 
    ptr_t r = p;
  
    PREFETCH(p);
    GET_HDR(p, hhdr);
    if (EXPECT(IS_FORWARDING_ADDR_OR_NIL(hhdr),FALSE)) {
        if (hhdr != 0) {
          r = GC_base(p);
        hhdr = HDR(r);
      }
        if (hhdr == 0) {
            GC_ADD_TO_BLACK_LIST_STACK(p, source);
          return;
      }
    }
    if (EXPECT(HBLK_IS_FREE(hhdr),0)) {
      GC_ADD_TO_BLACK_LIST_NORMAL(p, src);
      return;
    }
#   if defined(MANUAL_VDB) && defined(THREADS)
      /* Pointer is on the stack.  We may have dirtied the object */
      /* it points to, but not yet have called GC_dirty();  */
      GC_dirty(p);      /* Implicitly affects entire object.      */
#   endif
    PUSH_CONTENTS_HDR(r, GC_mark_stack_top, GC_mark_stack_limit,
                  source, mark_and_push_exit, hhdr, FALSE);
  mark_and_push_exit: ;
    /* We silently ignore pointers to near the end of a block,    */
    /* which is very mildly suboptimal.                     */
    /* FIXME: We should probably add a header word to address     */
    /* this.                                          */
}

# ifdef TRACE_BUF

# define TRACE_ENTRIES 1000

struct trace_entry {
    char * kind;
    word gc_no;
    word bytes_allocd;
    word arg1;
    word arg2;
} GC_trace_buf[TRACE_ENTRIES];

int GC_trace_buf_ptr = 0;

void GC_add_trace_entry(char *kind, word arg1, word arg2)
{
    GC_trace_buf[GC_trace_buf_ptr].kind = kind;
    GC_trace_buf[GC_trace_buf_ptr].gc_no = GC_gc_no;
    GC_trace_buf[GC_trace_buf_ptr].bytes_allocd = GC_bytes_allocd;
    GC_trace_buf[GC_trace_buf_ptr].arg1 = arg1 ^ 0x80000000;
    GC_trace_buf[GC_trace_buf_ptr].arg2 = arg2 ^ 0x80000000;
    GC_trace_buf_ptr++;
    if (GC_trace_buf_ptr >= TRACE_ENTRIES) GC_trace_buf_ptr = 0;
}

void GC_print_trace(word gc_no, GC_bool lock)
{
    int i;
    struct trace_entry *p;
    
    if (lock) LOCK();
    for (i = GC_trace_buf_ptr-1; i != GC_trace_buf_ptr; i--) {
      if (i < 0) i = TRACE_ENTRIES-1;
      p = GC_trace_buf + i;
      if (p -> gc_no < gc_no || p -> kind == 0) return;
      printf("Trace:%s (gc:%d,bytes:%d) 0x%X, 0x%X\n",
            p -> kind, p -> gc_no, p -> bytes_allocd,
            (p -> arg1) ^ 0x80000000, (p -> arg2) ^ 0x80000000);
    }
    printf("Trace incomplete\n");
    if (lock) UNLOCK();
}

# endif /* TRACE_BUF */

/*
 * A version of GC_push_all that treats all interior pointers as valid
 * and scans the entire region immediately, in case the contents
 * change.
 */
void GC_push_all_eager(ptr_t bottom, ptr_t top)
{
    word * b = (word *)(((word) bottom + ALIGNMENT-1) & ~(ALIGNMENT-1));
    word * t = (word *)(((word) top) & ~(ALIGNMENT-1));
    register word *p;
    register ptr_t q;
    register word *lim;
    register ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
    register ptr_t least_ha = GC_least_plausible_heap_addr;
#   define GC_greatest_plausible_heap_addr greatest_ha
#   define GC_least_plausible_heap_addr least_ha

    if (top == 0) return;
    /* check all pointers in range and push if they appear  */
    /* to be valid.                                   */
      lim = t - 1 /* longword */;
      for (p = b; p <= lim; p = (word *)(((ptr_t)p) + ALIGNMENT)) {
      q = (ptr_t)(*p);
      GC_PUSH_ONE_STACK((ptr_t)q, p);
      }
#   undef GC_greatest_plausible_heap_addr
#   undef GC_least_plausible_heap_addr
}

#ifndef THREADS
/*
 * A version of GC_push_all that treats all interior pointers as valid
 * and scans part of the area immediately, to make sure that saved
 * register values are not lost.
 * Cold_gc_frame delimits the stack section that must be scanned
 * eagerly.  A zero value indicates that no eager scanning is needed.
 * We don't need to worry about the MANUAL_VDB case here, since this
 * is only called in the single-threaded case.  We assume that we
 * cannot collect between an assignment and the corresponding
 * GC_dirty() call.
 */
void GC_push_all_stack_partially_eager(ptr_t bottom, ptr_t top,
                               ptr_t cold_gc_frame)
{
  if (!NEED_FIXUP_POINTER && GC_all_interior_pointers) {
    /* Push the hot end of the stack eagerly, so that register values   */
    /* saved inside GC frames are marked before they disappear.         */
    /* The rest of the marking can be deferred until later.       */
    if (0 == cold_gc_frame) {
      GC_push_all_stack(bottom, top);
      return;
    }
    GC_ASSERT(bottom <= cold_gc_frame && cold_gc_frame <= top);
#   ifdef STACK_GROWS_DOWN
      GC_push_all(cold_gc_frame - sizeof(ptr_t), top);
      GC_push_all_eager(bottom, cold_gc_frame);
#   else /* STACK_GROWS_UP */
      GC_push_all(bottom, cold_gc_frame + sizeof(ptr_t));
      GC_push_all_eager(cold_gc_frame, top);
#   endif /* STACK_GROWS_UP */
  } else {
    GC_push_all_eager(bottom, top);
  }
# ifdef TRACE_BUF
      GC_add_trace_entry("GC_push_all_stack", bottom, top);
# endif
}
#endif /* !THREADS */

void GC_push_all_stack(ptr_t bottom, ptr_t top)
{
# if defined(THREADS) && defined(MPROTECT_VDB)
    GC_push_all_eager(bottom, top);
# else
    if (!NEED_FIXUP_POINTER && GC_all_interior_pointers) {
      GC_push_all(bottom, top);
    } else {
      GC_push_all_eager(bottom, top);
    }
# endif
}

#if !defined(SMALL_CONFIG) && !defined(USE_MARK_BYTES) && \
    defined(MARK_BIT_PER_GRANULE)
# if GC_GRANULE_WORDS == 1
#   define USE_PUSH_MARKED_ACCELERATORS
#   define PUSH_GRANULE(q) \
            { ptr_t qcontents = (ptr_t)((q)[0]); \
                GC_PUSH_ONE_HEAP(qcontents, (q)); }
# elif GC_GRANULE_WORDS == 2
#   define USE_PUSH_MARKED_ACCELERATORS
#   define PUSH_GRANULE(q) \
            { ptr_t qcontents = (ptr_t)((q)[0]); \
                GC_PUSH_ONE_HEAP(qcontents, (q)); \
              qcontents = (ptr_t)((q)[1]); \
                GC_PUSH_ONE_HEAP(qcontents, (q)+1); }
# elif GC_GRANULE_WORDS == 4
#   define USE_PUSH_MARKED_ACCELERATORS
#   define PUSH_GRANULE(q) \
            { ptr_t qcontents = (ptr_t)((q)[0]); \
                GC_PUSH_ONE_HEAP(qcontents, (q)); \
              qcontents = (ptr_t)((q)[1]); \
                GC_PUSH_ONE_HEAP(qcontents, (q)+1); \
              qcontents = (ptr_t)((q)[2]); \
                GC_PUSH_ONE_HEAP(qcontents, (q)+2); \
              qcontents = (ptr_t)((q)[3]); \
                GC_PUSH_ONE_HEAP(qcontents, (q)+3); }
# endif
#endif

#ifdef USE_PUSH_MARKED_ACCELERATORS
/* Push all objects reachable from marked objects in the given block */
/* containing objects of size 1 granule.                   */
void GC_push_marked1(struct hblk *h, hdr *hhdr)
{
    word * mark_word_addr = &(hhdr->hb_marks[0]);
    word *p;
    word *plim;
    word *q;
    word mark_word;

    /* Allow registers to be used for some frequently acccessed   */
    /* global variables.  Otherwise aliasing issues are likely    */
    /* to prevent that.                               */
    ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
    ptr_t least_ha = GC_least_plausible_heap_addr;
    mse * mark_stack_top = GC_mark_stack_top;
    mse * mark_stack_limit = GC_mark_stack_limit;
#   define GC_mark_stack_top mark_stack_top
#   define GC_mark_stack_limit mark_stack_limit
#   define GC_greatest_plausible_heap_addr greatest_ha
#   define GC_least_plausible_heap_addr least_ha
    
    p = (word *)(h->hb_body);
    plim = (word *)(((word)h) + HBLKSIZE);

    /* go through all words in block */
      while( p < plim )  {
          mark_word = *mark_word_addr++;
          q = p;
          while(mark_word != 0) {
            if (mark_word & 1) {
              PUSH_GRANULE(q);
            }
            q += GC_GRANULE_WORDS;
            mark_word >>= 1;
          }
          p += WORDSZ*GC_GRANULE_WORDS;
      }

#   undef GC_greatest_plausible_heap_addr
#   undef GC_least_plausible_heap_addr        
#   undef GC_mark_stack_top
#   undef GC_mark_stack_limit

    GC_mark_stack_top = mark_stack_top;
}


#ifndef UNALIGNED

/* Push all objects reachable from marked objects in the given block */
/* of size 2 (granules) objects.                           */
void GC_push_marked2(struct hblk *h, hdr *hhdr)
{
    word * mark_word_addr = &(hhdr->hb_marks[0]);
    word *p;
    word *plim;
    word *q;
    word mark_word;

    ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
    ptr_t least_ha = GC_least_plausible_heap_addr;
    mse * mark_stack_top = GC_mark_stack_top;
    mse * mark_stack_limit = GC_mark_stack_limit;

#   define GC_mark_stack_top mark_stack_top
#   define GC_mark_stack_limit mark_stack_limit
#   define GC_greatest_plausible_heap_addr greatest_ha
#   define GC_least_plausible_heap_addr least_ha
    
    p = (word *)(h->hb_body);
    plim = (word *)(((word)h) + HBLKSIZE);

    /* go through all words in block */
      while( p < plim )  {
          mark_word = *mark_word_addr++;
          q = p;
          while(mark_word != 0) {
            if (mark_word & 1) {
              PUSH_GRANULE(q);
              PUSH_GRANULE(q + GC_GRANULE_WORDS);
            }
            q += 2 * GC_GRANULE_WORDS;
            mark_word >>= 2;
          }
          p += WORDSZ*GC_GRANULE_WORDS;
      }

#   undef GC_greatest_plausible_heap_addr
#   undef GC_least_plausible_heap_addr        
#   undef GC_mark_stack_top
#   undef GC_mark_stack_limit

    GC_mark_stack_top = mark_stack_top;
}

# if GC_GRANULE_WORDS < 4
/* Push all objects reachable from marked objects in the given block */
/* of size 4 (granules) objects.                           */
/* There is a risk of mark stack overflow here.  But we handle that. */
/* And only unmarked objects get pushed, so it's not very likely.    */
void GC_push_marked4(struct hblk *h, hdr *hhdr)
{
    word * mark_word_addr = &(hhdr->hb_marks[0]);
    word *p;
    word *plim;
    word *q;
    word mark_word;

    ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
    ptr_t least_ha = GC_least_plausible_heap_addr;
    mse * mark_stack_top = GC_mark_stack_top;
    mse * mark_stack_limit = GC_mark_stack_limit;
#   define GC_mark_stack_top mark_stack_top
#   define GC_mark_stack_limit mark_stack_limit
#   define GC_greatest_plausible_heap_addr greatest_ha
#   define GC_least_plausible_heap_addr least_ha
    
    p = (word *)(h->hb_body);
    plim = (word *)(((word)h) + HBLKSIZE);

    /* go through all words in block */
      while( p < plim )  {
          mark_word = *mark_word_addr++;
          q = p;
          while(mark_word != 0) {
            if (mark_word & 1) {
              PUSH_GRANULE(q);
              PUSH_GRANULE(q + GC_GRANULE_WORDS);
              PUSH_GRANULE(q + 2*GC_GRANULE_WORDS);
              PUSH_GRANULE(q + 3*GC_GRANULE_WORDS);
            }
            q += 4 * GC_GRANULE_WORDS;
            mark_word >>= 4;
          }
          p += WORDSZ*GC_GRANULE_WORDS;
      }
#   undef GC_greatest_plausible_heap_addr
#   undef GC_least_plausible_heap_addr        
#   undef GC_mark_stack_top
#   undef GC_mark_stack_limit
    GC_mark_stack_top = mark_stack_top;
}

#endif /* GC_GRANULE_WORDS < 4 */

#endif /* UNALIGNED */

#endif /* USE_PUSH_MARKED_ACCELERATORS */

/* Push all objects reachable from marked objects in the given block */
void GC_push_marked(struct hblk *h, hdr *hhdr)
{
    size_t sz = hhdr -> hb_sz;
    word descr = hhdr -> hb_descr;
    ptr_t p;
    word bit_no;
    ptr_t lim;
    mse * GC_mark_stack_top_reg;
    mse * mark_stack_limit = GC_mark_stack_limit;
    
    /* Some quick shortcuts: */
      if ((0 | GC_DS_LENGTH) == descr) return;
        if (GC_block_empty(hhdr)/* nothing marked */) return;
    GC_n_rescuing_pages++;
    GC_objects_are_marked = TRUE;
    if (sz > MAXOBJBYTES) {
        lim = h -> hb_body;
    } else {
        lim = (h + 1)->hb_body - sz;
    }
    
    switch(BYTES_TO_GRANULES(sz)) {
#   if defined(USE_PUSH_MARKED_ACCELERATORS)
     case 1:
       GC_push_marked1(h, hhdr);
       break;
#    if !defined(UNALIGNED)
       case 2:
         GC_push_marked2(h, hhdr);
         break;
#     if GC_GRANULE_WORDS < 4
       case 4:
         GC_push_marked4(h, hhdr);
         break;
#     endif
#    endif
#   endif       
     default:
      GC_mark_stack_top_reg = GC_mark_stack_top;
      for (p = h -> hb_body, bit_no = 0; p <= lim;
         p += sz, bit_no += MARK_BIT_OFFSET(sz)) {
         if (mark_bit_from_hdr(hhdr, bit_no)) {
           /* Mark from fields inside the object */
             PUSH_OBJ(p, hhdr, GC_mark_stack_top_reg, mark_stack_limit);
         }
      }
      GC_mark_stack_top = GC_mark_stack_top_reg;
    }
}

#ifndef SMALL_CONFIG
/* Test whether any page in the given block is dirty  */
GC_bool GC_block_was_dirty(struct hblk *h, hdr *hhdr)
{
    size_t sz = hhdr -> hb_sz;
    
    if (sz <= MAXOBJBYTES) {
         return(GC_page_was_dirty(h));
    } else {
       ptr_t p = (ptr_t)h;
         while (p < (ptr_t)h + sz) {
             if (GC_page_was_dirty((struct hblk *)p)) return(TRUE);
             p += HBLKSIZE;
         }
         return(FALSE);
    }
}
#endif /* SMALL_CONFIG */

/* Similar to GC_push_marked, but skip over unallocated blocks    */
/* and return address of next plausible block.              */
struct hblk * GC_push_next_marked(struct hblk *h)
{
    hdr * hhdr = HDR(h);
    
    if (EXPECT(IS_FORWARDING_ADDR_OR_NIL(hhdr), FALSE)) {
      h = GC_next_used_block(h);
      if (h == 0) return(0);
      hhdr = GC_find_header((ptr_t)h);
    }
    GC_push_marked(h, hhdr);
    return(h + OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz));
}

#ifndef SMALL_CONFIG
/* Identical to above, but mark only from dirty pages */
struct hblk * GC_push_next_marked_dirty(struct hblk *h)
{
    hdr * hhdr = HDR(h);
    
    if (!GC_dirty_maintained) { ABORT("dirty bits not set up"); }
    for (;;) {
      if (EXPECT(IS_FORWARDING_ADDR_OR_NIL(hhdr), FALSE)) {
          h = GC_next_used_block(h);
          if (h == 0) return(0);
          hhdr = GC_find_header((ptr_t)h);
      }
#     ifdef STUBBORN_ALLOC
          if (hhdr -> hb_obj_kind == STUBBORN) {
            if (GC_page_was_changed(h) && GC_block_was_dirty(h, hhdr)) {
                break;
            }
          } else {
            if (GC_block_was_dirty(h, hhdr)) break;
          }
#     else
        if (GC_block_was_dirty(h, hhdr)) break;
#     endif
        h += OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz);
      hhdr = HDR(h);
    }
    GC_push_marked(h, hhdr);
    return(h + OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz));
}
#endif

/* Similar to above, but for uncollectable pages.  Needed since we      */
/* do not clear marks for such pages, even for full collections.  */
struct hblk * GC_push_next_marked_uncollectable(struct hblk *h)
{
    hdr * hhdr = HDR(h);
    
    for (;;) {
      if (EXPECT(IS_FORWARDING_ADDR_OR_NIL(hhdr), FALSE)) {
          h = GC_next_used_block(h);
          if (h == 0) return(0);
          hhdr = GC_find_header((ptr_t)h);
      }
      if (hhdr -> hb_obj_kind == UNCOLLECTABLE) break;
        h += OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz);
      hhdr = HDR(h);
    }
    GC_push_marked(h, hhdr);
    return(h + OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz));
}


Generated by  Doxygen 1.6.0   Back to index